

Using fish diets as ecosystem indicators:

Are fish feeding down the food web on Georges Bank?

Brian E. Smith and Sean M. Lucey

NOAA, NMFS, Woods Hole, Massachusetts, U.S.A

Major Objectives

- Develop time series of ecosystem mean trophic level (MTL) from fish diets (21 species) and survey trawl data for Georges Bank of the northeast U.S. continental shelf.
- Identify common trends in MTL among fish diets and survey data.
- 3. Answer the question: Are fish feeding down the food web?

Rationale

- 1. Global concern for decrease in MTL derived from fisheries catches (i.e. Fishing Down Food Web).
- Suggested that catch MTL represents ecosystem MTL; thus decreases imply global reduction in marine biodiversity.
- 3. Imperative to identify suitable ecosystem indicators for monitoring biodiversity given potential disruptions from large-scale forces.

Rationale

- 4. Addressing the suitability of catch MTL as an indicator, we can explore this topic with fish diets from opportunistic generalists spanning the benthos to midwater environments on Georges Bank.
- 5. Highly debated topic and why we're here today.

Available Data

- 1. Fish biomass per tow from seasonal bottom trawl surveys on Georges Bank, 1963-2012.
- 2. Diet data for Georges Bank fish community (21 species of groundfish, flounders, pelagics, and elasmobranchs) from seasonal bottom trawl surveys, 1973-2012.

Predators

Groundfish

Atlantic cod (Gadus morhua)

Goosefish (Lophius americanus)

Haddock (Melanogrammus aeglefinus)

Ocean pout (Zoarces americanus)

Pollock (Pollachius virens)

Red hake (*Urophycis chuss*)

Silver hake (*Merluccius bilinearis*)

White hake (*Urophycis tenuis*)

Pelagics

Atlantic herring (*Clupea harengus*)
Atlantic mackerel (*Scomber scombrus*)

Elasmobranchs

Spiny dogfish (*Squalus acanthias*) Thorny skate (*Amblyraja radiata*) Winter skate (*Leucoraja ocellata*)

Flounders

American plaice (*Hippoglossoides platessoides*)

4-spot flounder (Paralichthys oblongus)

Windowpane flounder (Scophthalmus aquosus)

Winter flounder (Pseudopleuronectes americanus)

Witch flounder (Glyptocephalus cynoglossus)

Yellowtail flounder (*Limanda ferruginea*)

Others

Longhorn sculpin (Myoxocephalus octodecemspinosus)

Sea raven (Hemitripterus americanus)

Mean Trophic Level (MTL_y)

NOAA FISHERIES

$$MTL_{y} = \frac{\sum_{i} (TL_{i} \cdot Y_{iy})}{\sum_{i} Y_{iy}}$$

 TL_i = Trophic level per species group *i*. Y_{iy} = Survey catch or prey biomass of species *i* in year *y*.

- 1. Annual average *TL* weighted by species group biomass from survey catches or fish diets.
- 2. TL of species groups derived with Ecopath (e.g. demersals-omnivores, small pelagics-commercial; Link et al. 2008).

Survey Mean Trophic Level

- Average annual MTL per season was 4.03 (spring) and 4.00 (fall).
- Minor inter-annual variability.
- Final MTL time series taken as an annual average of spring and fall data.

Diet Mean Trophic Level

Time Series Modeling

Multivariate autoregressive state-space models

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ \vdots \\ y_{22} \end{bmatrix} = \begin{bmatrix} Z_{1,1} Z_{1,2} Z_{1,3} Z_{1,4} Z_{1,5} \\ Z_{2,1} Z_{2,2} Z_{2,3} Z_{2,4} Z_{2,5} \\ Z_{3,1} Z_{3,2} Z_{3,3} Z_{3,4} Z_{3,5} \\ Z_{4,1} Z_{4,2} Z_{4,3} Z_{4,4} Z_{4,5} \\ Z_{5,1} Z_{5,2} Z_{5,3} Z_{5,4} Z_{5,5} \\ \vdots & \vdots & \vdots & \vdots \\ Z_{22,1} Z_{22,2} Z_{22,3} Z_{22,4} Z_{22,5} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} + \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ \vdots \\ a_{22} \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ \vdots \\ v_{22} \end{bmatrix}$$
• Missing data
• Dynamic factor analysis
• Model process and observation error separately

$$\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_{22} \end{bmatrix} \sim \text{MVN} \left(\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{R}_{1,1} \ \mathbf{R}_{1,2} \ \dots \ \mathbf{R}_{1,22} \\ \mathbf{R}_{2,1} \ \mathbf{R}_{2,2} \ \dots \ \mathbf{R}_{2,22} \\ \vdots \ \vdots \ \ddots \ \vdots \\ \mathbf{R}_{22,1} \ \mathbf{R}_{22,2} \ \dots \ \mathbf{R}_{22,22} \end{bmatrix} \right)$$

- Non-stationary data

- separately
- EM algorithm
- Trend based on random walk

Identifying Trends

Model Selection

R = covariance matrix structure; m = number of trends; AICc = selection measure.

Model	R	m	AICc
1	diagonal and equal	1	1696.5
2	diagonal and equal	2	1730.9
6	diagonal and unequal	1	1734.1
3	diagonal and equal	3	1767.1
7	diagonal and unequal	2	1770.8
4	diagonal and equal	4	1801.3
8	diagonal and unequal	3	1807.3
9	diagonal and unequal	4	1840.0
5	diagonal and equal	5	1843.9
10	diagonal and unequal	5	1877.1

Modeling Mean Trophic Level

Conclusions

- 1. Contrary to global fisheries catch MTL, modeled diet and survey catch on Georges Bank has not shifted dramatically over the past 4+ decades.
- One common pattern among diet and survey catch MTL was identified, suggesting these time series are timeinvariant.

Discussion

- 1. Identifying actual trends in ecosystem health is challenging. Diets from opportunistic generalists shed a novel light on monitoring ecosystem change.
- 2. The collective diet stability and feeding strategies of these predators on Georges Bank may strengthen ecosystem resilience.

A. Miller

Discussion

- 3. Maintaining long-term biodiversity remains an intriguing challenge. Specific to fisheries, the pivotal roles of targeted species, and the demands on communities and various habitats surely test ecosystem stability.
- 4. With many large-scale drivers present, applying ecological interactions with the monitoring and conservation of marine communities and fish stocks is highly advantageous.

Thank you!

- Many survey personnel for data collection.
- Symposium conveners and participants.

A. O'brien